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A first-order volume of fluid convection model in
three-dimensional space
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SUMMARY

To improve the numerical analysis of free surface convections and reconstruction in a three-dimensional
space, a first-order algorithm is developed based on the volume of fluid (VOF) theory. The methodology
applied to the first-order method (FOM) is to define a first-order surface as near to the horizontal as
possible while satisfying the defined volume fraction of a cell. The developed method is compared against
the donor cell method of zeroth-order through simulation of the transitional and rotational convection
of liquid spheres. Although the donor cell method shows relatively good predictions for the sphere of a
large diameter, it shows poor performance of large distortions for a sphere of a relatively small diameter.
However, the FOM developed in this study always shows quite satisfactory prediction results for free
surface convection. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A variety of physical hydrodynamic phenomena involve interfaces between phases as shown in
Figure 1(a) (where ‘F’ and ‘V’ denote a cell filled with fluid or a void respectively and ‘S’
denotes the surface cell partly filled with fluid and void). These interfaces can exhibit dynamic
behavior and an exact mathematical description of fluid interfaces is required to solve the
transport equations of motion on the fluid domain. However, the numerical description of free
surface flow and interfaces is notoriously complicated due to difficulties associated with the
discrete representation of the interfaces. The locations of these interfaces are not known in
advance and must be determined as part of the solutions of the transport equations. There are
several numerical methods for treating fluid problems with interfaces using the Lagrangian
approach, such as the boundary integral technique [1-3], finite element methods [4-6] and
boundary-fitted orthogonal co-ordinates [7-9]. Through these techniques, the dynamic
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Figure 1. Typical examples and reconstruction scheme for the interfaces of free surface for two-
dimensional space.

behavior of free surfaces can be calculated. However, it is difficult to handle complex
phenomena, such as surface folding and surface merging, due to the discrete specification of
moving points using these techniques.

A numerical technique that has the potential for handling large surface deformations, such
as surface folding and merging, is the volume-tracking method. This method uses a volumetric
progress variable, such as the volume of fluid (VOF) in the marker-and-cell (MAC) technique
[10-12], and the VOF technique [13-16], for Lagrangian transport of the interfaces. The MAC
method involves Eulerian flow field calculations and Lagrangian liquid—particle movements.
The velocity of the marker is found by taking the average of the Eulerian velocities in its
vicinity. One of the difficulties in using the MAC method is the possible creation of artificially
high or low marker number densities in the cells due to the irregularity of the flow field. The
VOF method can be applied to determine free surface curves by use of the volume fraction of
a calculation cell and/or its environmental cells. This method is not susceptible to the problems
that can be encountered when using the MAC method. For two-dimensional analysis, various
VOF convection methods have been developed. In the earlier applications of the VOF method,
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the donor cell method (DCM) of zeroth-order [17-19] was used for VOF convection
calculations, where the shape in a surface cell was assumed to be either horizontal or vertical
rectangular shapes as shown in Figure 1(b). To improve the accuracy of free surface
convection of the DCM, Youngs [19] and Ashgriz [20] developed a first-order method (FOM)
and Kim [21,22] developed a second-order method, where the interface is approximated by a
first-/second-order linear equation as shown in Figure 1(c) and (d). As expected, the higher-
order models show better results. Even though the higher-order methods for a two-dimensional
problem improve the accuracy of free surface convection, there are difficulties when directly
applying it to three-dimensional space. The reason is that, because the VOF values are
discontinuous with respect to the co-ordinates at the interfaces, the VOF distribution cannot
be represented by a function that is defined by a single co-ordinate variable. From these
reasons, a separate technique needs to be developed for the application of the higher-order
model to a three-dimensional problem. As an approach, this paper develops a first-order VOF
convection model with consideration of three-dimensional effects.

2. FIRST-ORDER MODEL IN THREE-DIMENSIONAL SPACE

2.1. Concept of first-order method

The methodology for the FOM in a three-dimensional space is to find a first-order plane. If
a free surface is nearly horizontal to the plane perpendicular to a z-axis and both of the VOF
slopes m, and m, are negative, the VOF distribution function can be represented like Equation

(1)
f=ax+by+c (1)

The coefficients a and b of Equation (1) are obtained by equating VOF slopes with the
differentiated values of the distribution function, such as Equation (2)

o o
A= 4= M ay—b—my 2

The coefficient of ¢ in Equation (1) is obtained by equating the VOF value F to the integration
of the distribution function over dx dy, such as Equation (3)

sz (ax+by+c)dx dy (3)

After establishing the VOF distribution function by the first-order equation, the convective
fluxes of a surface cell are calculated by the integration of the equation. For the right-hand
side x-face of Figure 2, the convective flux is the integration of the VOF distribution function
over dx dy as shown in Equation (4)
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Figure 2. Free surface representation by the FOM.
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As described above, to implement the FOM it is necessary that the slopes of the VOF
distribution function need to be known and a technique needs to be developed for handling
numerous cases from the slopes and the VOF value. Therefore, the FOM is implemented
through the following steps in this study:

Step 1: calculation of the slopes and selection of a base plane.
Step 2: calculation of coefficients for VOF distribution function.
Step 3: calculation of convective fluxes.

2.2. Calculation of the slopes and selection of base plane

For VOF slope calculation, a cell block is used in this study so that the slope between a surface
cell and a neighboring cell does not lose its accuracy even though the neighboring cell is empty.
A cell block is constructed of a surface cell and its eight neighboring cells as shown Figures 3
and 4. For the x-direction slope, the VOF distribution is approximated as three cell columns
that are the sum of the volume fraction from cell (j— 1) to cell (j+ 1) as described by
Equations (5)—(7)

j+1
Z (dkui—l,k) it
k=j—1 ’
F_ =~ ., H= ) dy (5

H fe=j—1
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Figure 3. Cell block for x-direction slope (m,,) on a y-axis plane.
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Figure 4. Cell block for z-direction slope (m2,.) on a y-axis plane.
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The slope between the cell columns is obtained by integrating a straight line crossed over two
cell columns. If the larger value of the volume fraction between the two columns is assigned
as F; and the smaller one as Fr and the cell width is represented as x; (= L/H) for F; and
xr (= R/H) for Fy, the slope ‘m’ is calculated from Equations (8)—(15) by categorizing the
cases based on the value of F,, Fi, X, Xxg as shown in Figure 5

Case 1
S N RNy ®
XL
if
FlsF 2RI g p<1— [/ XuFi + 251 =/ ¥kil, 9)
XRr 4x,
Case 2
__AR—Fy) (10
(xp + xg)
if
I T
S~ [ A A

Case-1 Case-2

Figure 5. Calculation of slope of volume fraction between two cell columns.

Copyright © 2001 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids 2001; 36: 185-204



VOF CONVECTION MODEL 191

P T S L T T Sabi R an
XR 2x + xg
Case 3
m= _2[\/XR(1 — Fp) +x (1= F) — /x(1 —FR)}2 12
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Case 4
R Emveal]
m= 2 (14)
V(= F) + /xp(1 = F)
if
F o<1-— [\/XRFR + 2x; — \/XRFR]Z and  F, < [\/xL(l —F)+2xg — \/XL(l _ FL)]Z
4XL 4xR
(15)
The average slope at the center of a cell block is calculated by Equations (16)
Gy _meoxEmoxe o _dutde,, o dn Hdy (16)
dx AVG 5XL+5XR 2H 2H
A similar calculation can be made for df/dz by Equations (17) and (18)
i+ 1
Z dx/ka,j J+1
’ H k :;— 1 Tk ( )
Yy _mozptmeozy s _da e, o daeatda (18)
dz AVG 5ZT+ 523 2H 2H

In order to represent the VOF distribution by the first-order equation, a base plane needs to
be established because the VOF function is defined on the base plane. The base plane is a
plane perpendicular to one of the x-, y-, z-axes, where a free surface is nearly horizontal to the
plane. The horizontal plane is obtained by selecting the minimum height difference (H,,., —
H_;,) in a cell. The height difference dH is calculated by Equation (19) for each direction, as
shown in Figure 6
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dH = |m; d¢|+ |m, dn| (19)

2.3. Calculation of coefficients for VOF distribution function

When a surface cell block is defined from the typical interface, there are a variety of free
surface shapes in a surface cell. To reduce the numerous cases, the slopes of the free surface
on the base plane is rearranged such that the slopes to ¢ and # are negative and the absolute
value of m; is less than m,. In addition, if the VOF value of the donor cell is greater than 0.5,
then the definition of VOF is changed from the calculated fluid to the other fluid. By this
arrangement of the slopes and VOF definition change, the basic cases are reduced to 5 as
shown in Figure 7. After establishing the base cases by the method described above, the
coefficients ¢ and b are calculated by Equation (20)

o _

o
28 —=b=m

& 6’7 n (20)

a=m

The coefficient ¢ of Equation (1) is calculated by equating the VOF value and the integration
of the VOF distribution function. The integration of the VOF distribution function is
implemented case by case. Each case is examined by comparing the value of the volume
fraction F of the surface cell with the criteria as described below. If m: # 0, then the cases are
identified as follows:

If F < Fc,,, then case 1;

If Fe,y > F > Fcy,, then case 2;

If Feyy > F > Feyy or Feys > F > Fe,y, then case 3;
If F > Fcs,, then case 4;

If F> Fc,s, then case 5.
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Figure 7. Possible cases for the FOM.
dés m?
e S 21
‘2 6me ( )
d 2dé?—3m. d d 3m?2 dy?
Feyy= — ¢(m?zd¢ m: d& m, dn + 3m; dn?) .
6m,V
d¢ dy(m. d& +m, dn)
Feyy= — %2V " o
Feys = _(dC3+m2—“d§3+3m§d52dC+3m¢ dé dC2+3Wlidiy2 d(:—|—3m,] dy d(2—|—m’37d;73)

6m:m,V

24)

However, if m; =0, then there are only two possible cases, case 2 and case 4, and these are
identified by Equation (25). If F > Fc,,, then case 4 and if FF'< Fc,, then case 2. If m. =0 and
m, =0, then there is only one case, case 4

dém, dn?

e (25)

Feyy= —
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2.3.1. Coefficient ¢ calculation of the VOF distribution function. Coefficient ¢ of Equation (1) is
calculated based on the cases identified in the above section. For cases 1, 2 and 4, coefficient
¢ is obtained explicitly and for cases 3 and 5 it is obtained by solving a third-order linear
equation (29) analytically along Cardano’s solution procedure [23] with the coefficients given

by Equations (30) and (31) respectively.

For case 1
¢ = (6FVmam, )"

For case 2

_mg d¢ +\/— 3m2dé? —72Fm, dyp d¢

2 6
For case 4
-d d
c=FdC——mg < +m, dn
2
For case 3

X +ax*+ax+a;=0

a; =3m; d+3m, dy

a,=3mzd&? +3m; dy?

as=m}dé’ + 6Fm; dém, dny d{+ m; dy’®

For case 5
3
a1=§(m¢dé+ﬂnndn—dé)

3
@ =5 (3 &% 4 m? dy* + ()

1 1 1
a3=§m§ d&? +3Fm. dém, dy dC+§m;§ d173—§d§3

Copyright © 2001 John Wiley & Sons, Ltd.

(26)

27)

(28)

(29)

(30)

(1)

Int. J. Numer. Meth. Fluids 2001; 36: 185-204



VOF CONVECTION MODEL 195

2.4. Calculation of convective fluxes

2.4.1. Rearrangement of surface cell. For calculation of convective flux, the direction of
convection in the base cases must be identified since the slopes and the volume fraction of the
surface cells are rearranged to reduce the number of cases. The detailed indications of ¢, # and
{ co-ordinates of the base cases relative to the real computation domain in the x-, y- and
z-direction are indicated in Table I, where the z-plane is a base plane. As an example, as
shown in Figure 8, shape (a) has the following properties: |h.| < |h,| <|h,|, m., >0, m_, >0,
F1 — F > 0. The shape is rearranged based on the guide of Table I such that the ¢-, 5-, {-axes
are the reverse directions of the x, y, z co-ordinates.

Table I. Rearrangement of the FOM to reduce the base case.

Height m m, m, m, ¢ n Fr—F% ( Number

|| <|h, | <|h| —|m.|  —m,] <0 <0 +x +y <O +z 1
<0 <0 +x +y >0 -z 2
<0 >0 +x -y <O +z 3
<0 >0 4+x —y >0 —z 4
>0 <0 —x 4y <0 +z 5
>0 <0 —x 4y >0 —z 6
>0 >0 —x —y <0 +z 7
>0 >0 —x —y >0 -z 8

|| <|h <] —|m,|  —Jm.| <0 <0 +y +x <O +z 9
<0 <0 +y +x >0 —z 10
<0 >0 —y +4+x <0 +z 11
<0 >0 —y +x >0 —z 12
>0 <0 +y —x <0 +z 13
>0 <0 +y —x >0 —z 14
>0 >0 —y —x <0 +z 15
>0 >0 —y —x >0 —z 16

* VOF difference between the top and bottom cells in the direction of the axis perpendicular to the
base plane.
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Figure 8. Rearrangement of free surface.
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2.4.2. Flux calculation. After rearranging the original shape, the convective flux in the FOM is
calculated via integration of the first-order equation from the cell face to the distance defined
by the local velocity of the cell face over the time (Figure 9). To introduce the detailed
procedure, convective flux calculations for case 1 are delineated from Equation (32)—(43) for

m; and m, not zero.

Case 1
For positive ¢-direction (&, =d¢ — |u,| x dr)
if¢,> ¢, thenf, =0 (32)
. (me,+c)’
if ép<§1, then ‘&P:W (33)
For negative ¢-direction (¢, = |u,,| x dr)
if &, >¢, thenf, =F (34)
. (mfém + C)3
f th . =F—-—"— 35
1 ém < 515 cn fg‘m 6m§m,7V ( )
For positive #-direction (17, = diy — |v,| x dr)
(36)

if n,> 1, thenf,,p =0

<F3\\ T >
T U
b7 /
e

?? | [\’,-

Figure 9. Convective flux calculation model.
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. (m, i, + )’
if Mo < then ffp ZW (37)
[Shae/}

For negative 7-direction (1,, = |v,,| x d?)

if n,,>n,, thenf, =F (38)
. (m,n,, + ¢)?
if N <12, then f’7m =F— W (39)
For positive {-direction ({, =d{ — |w,| x dr)
if {,> {5, thenf; =0 (40)
. (c=¢)
if Cp< {3, then &P:W (41)
For negative (-direction (¢, = |w,,| x dr)
if {,,> {5, thenf, =F (42)
. (C - é’m)3
if (m < (3, then f‘(m =F— W (43)

For the other cases the convective flux is calculated in the same way.

3. RESULTS AND DISCUSSION

3.1. Reconstruction of free surface

To assess the capability for reconstruction of free surfaces, a spherical liquid drop is
reconstructed by the present method, as shown Figure 10, based on the VOF calculated by an
analytical method. The outermost circle represents the interface at the center of the liquid drop
to the z-direction. The concentric circles are interfaces of the sections at the radius of 3-4
times that of a cell size to the z-axis direction with an increment of 0.2 times the cell size.
However, the liquid drop is reconstructed as square boxes by the DCM of Hirt and Nichols,
since the VOF is assumed to be constant within a cell, as shown in Figure 11.

3.2. Transitional convection of a sphere

The FOM developed in this study is tested and compared with the DCM for the convection
of liquid spheres. The DCM used in this study is from Martin [24] for three-dimensional free
surface convection. A uniform velocity field is assigned for the entire calculation region to the
positive x-, y-, z-directions. The velocities in the field are assigned as one quarter of a cell size,

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 185-204
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Figure 10. Reconstruction of liquid sphere with radius 6.0—7.0 times the mesh cell.

which is of uniform length in this study in every direction. The sphere is convected with this
velocity for 80 time steps until the largest sphere completely moves out of its original location.
The calculation results are reviewed against three types of numerical errors. The first one is a
maximum cell convection error, which can be an indication of local shape deformation. The
second is the square-root-of-the-square-sum (SQRSS) of every cell error for an indication of
overall convection error. The final one is a total volume change to measure the conservation
of volume fraction during total convection period. The convection error of a cell is defined as
the cell volume fraction difference between original analytical input data and the value of the
VOF after the convection to the final time step for each cell, and those are normalized to the
total volume of each sphere.

The normalized maximum cell errors for each convection method are shown in Figure 12 for
transitional convection. The DCM and the FOM show a continuous decrease with increasing
numbers of cells for the radius of the sphere. The error of the FOM is one-third or one-quarter
of the DCMs for small-radius spheres but is over one tenth of the DCMs for large-radius
spheres. It is representative that the FOM has much less local distortions from the original
shape than the DCM. Comparing the slopes of error in the semi-log plots, the maximum error
of the FOM is decreasing more rapidly than that of the DCM. It may be reasoned that as the
number of cells increases, the free surface of a circle can be represented exactly by the segments
of the first-order curve as the circle diameter increases. The SQRSS errors for both methods
are shown in Figure 13, where the error has a similar tendency to the maximum cell error. The
magnitude of the SQRSS error of the FOM is almost one-tenth of that of the DCM. The
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Figure 11. Reconstruction of liquid sphere with radius 6.0—7.0 times the mesh cell.

—+— Doror Cell Method —m— First-Order Method|

1.E-01

1LE-02

\\>

3 6 9 12
Number of cells for sphere radius

S 1E-04

Normalized Maximum Error
(Max. Error/Total volume)

1.E-05

Figure 12. Maximum cell error vs sphere radius after 80 time step transitional convections.
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Figure 13. SRSSE vs sphere radius after 80 time step transitional convections.

SQRSS error of the FOM decreases more rapidly than the one of the DCM as the number of
cells increases. This feature may be due to the same reasons as that of the one described for
the maximum error. The magnitude of the SQRSS means a deviation of convection errors in
each cell. As the SQRSS increases, the probability for deviation of the convected VOF value
from the analytical data increases and vice versa. The volume changes by VOF convection are
examined since they may impact the continuity equation for pressure calculation in solving the
momentum equations of incompressible flow. The normalized volume changes for each method
are shown in Figure 14. The amount of the volume change with respect to the radius for FOM
varies around 1.0 x 10~ and the value for DCM varies around 3.0 x 10 >, From the above
results, the total volume change of the FOM is slightly less than the one of the DCM but is
almost the same for both free surface convection methods. To visualize the convection results,
three views of the reconstructed sphere are shown in Figure 15. The leftmost one is for an original
sphere with a radius of eight cells and the center one is for the sphere after an 80-time step
convection by the FOM and the rightmost one is for the sphere after the DCM. As shown in
Figure 15, the reconstructed shape of the FOM convection maintains almost its original shape.
However, the reconstructed shape after convected by the DCM was badly distorted. This is
consistent with the results of Figures 12 and 13. From the results it is known that the FOM
has a better capability than the DCM in transitional convection of spherical shapes.

3.3. Rotational convection of a sphere

To compare the performance of each method for a rotational flow, various sizes of liquid sphere
are examined for a uniform angular velocity. The angular velocity is assumed such that the
maximum circumferential velocity of the maximum size of liquid sphere is one quarter of a
uniform cell size. The sphere is turned on an axis (z-axis) with the velocity until it rotates around
completely. After convection, the normalized maximum error between the two methods is
compared, as shown in Figure 16. The magnitude of the maximum error of the FOM varies

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 185-204
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Figure 14. Volume change of FOM and DCM after 80 time step transitional convections.

]
e N I e ey WO M s
e I e i /i e o T A
L LT [ T]
- — I . N\ - | ]
F T N /] 1 \ \/ ] N ! ]
77 AIRA T RARAN 1 ] Iy L]
IR T T VA RN I
VT [T O WAL LU T NIIA | [}
ALY JAViIRY AR Vit N i [ ]
k) e 7 - Vi [
¥ / I /]
1 Lol et / |
o LA R e |
s R e e A g g N B
- S ]
[T [T
(a)Original Shape (b)Reconstructed shape after (c)Reconstructed shape
80 time step transition by after 80 time step transition
First-Order Method by Donor Cell Method

Figure 15. Reconstruction of a spherical liquid drop after 80 time step transitional convection by the
FOM and DCM.

from one-tenth to one-fifticth of that of the DCM. The SQRSS error and the volume
change for both of the methods are shown in Figures 17 and 18, where both errors have similar
tendency to the transitional convection. To visualize the accuracy of the convection, three
views of the reconstructed sphere are shown in Figure 19. The leftmost one is a drawing for
an original sphere with a radius of eight cells, the center one is for the sphere after a 300-time
step convection by the FOM and the rightmost one is for the sphere after the DCM. As shown
in the figure, the reconstructed sphere of the FOM convection almost maintains its original
shape. However, the reconstructed sphere after convection by the DCM is badly distorted.
This is consistent with the results of Figures 16 and 17. From the results, it is known that the
FOM has a much better capability than the DCM for rotational convection of the sphere also.
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Figure 16. Maximum cell error vs sphere radius after 300-time step rotational convections.
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Figure 17. SRSSE vs sphere radius after 300 time step rotational convections.
4. CONCLUSIONS

A new technique for the interface transport and reconstruction of the free surface in a
three-dimensional space was developed for the numerical models of the volume fraction
method. The basic features of this technique are to represent the free surface and to calculate
the convective flux by utilization of a set of first-order equations. This technique was tested for
the various sizes of spheres for transitional and rotational convection. For both of the tests,
the reconstructed shape of the sphere after convection by the DCM shows an extremely
distorted one. On the other hand, the reconstructed shape of the sphere after the convection
by the FOM almost shows the original shape. From the test, it was found that the total volume
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Figure 18. Total volume change vs sphere radius after 300 time step rotational convections.
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Figure 19. Reconstruction of a spherical liquid drop after 300 time step rotational convection with
uniform angular velocity.

change is negligibly small for all the free surface convection models tested, but the maximum
error and the SQRSS error of a cell heavily depend on the convection model tested and the
errors are good indicators of the accuracy of the convection model explicitly. In conclusion, it
is known that the FOM is recommended to achieve better accuracy for the reconstruction and
convection of free surface in a three dimensional space.
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